Category Archives: Demonstration

Subhub Gets Lift Off

QED Naval are pleased to annouce the acceptance of the Subhub – Kraken’s main hull fabrication including all outfit hotwork.

An important part of the acceptance was the main hull lift off the cradle and supporting structure onto the Subhub’s main leg structure to fully support her ample weight.

Factory Acceptance Tests (FATs) which pressurised each of the ballast tanks were completed successfully along with all the load testing of the lifting equipment including the main hull lifting lugs (68t load) and the modular solid ballast blocks (2 off) each weighing 20t.

All the welding plans and Non-Destructive Tests (NDTs) have been completed and approved.

QED Naval would like to take the opportunity to thank their prime contractors, Cimpina, in their support and commitment that they have provided to get the project to this point of completion.

QED Naval have now taken responsibility for all the outfitting of the Subhub and has completed all the internal outfit. Kraken is now awaiting painting which will be completed in early October.

QED Naval are currently commissioning and testing all the ballast and instrumentation systems prior to a planned launch in early 2018.

Subhub aft end showing the semi-duct that accelerates the flow into the turbines for increased power output and yield.
Subhub undergoing FATs pressure testing where each tank is pressurised to ensure water tightness and hydrostatic load capability.
The power of buoyancy! Amazing to think that this small compressor can lift almost 200 tons from the seabed in such a stable way over such large tidal and wave weather windows.

Subhub Nears Completion at Cimpina for EMEC Deployment

 

QED Naval and their selected fabricators, Cimpina based in Northern Ireland, are soon to complete the Subhub community demonstrator ready for deployment to EMEC in the next couple of months. Once at EMEC it is intended to use the FORESEA funding to conduct a phased set of sea trials to demonstrate that a tidal array can be installed and recovered in a single offshore operation using small vessel with low date rates.

  • Phase 1a installation and recovery trials at the scale tidal test site using replica turbines and equipment allowing marine operators to gain valuable experience of installation method.
  • Phase 1b aims to integrate Schottel Hydro SIT-250 turbines providing Subhub with a capacity of 190kW, capable of powering 50 homes. This collaboration includes SME who will be providing their ‘Flipper’ support structure for bi-directional flow, Platform Operation Module (POM), for controlling the platform at EMEC and Subsea Transformer Module (STM) to transmit the grid friendly power ashore.
  • Phase 2a will then move operations over to the Falls of Warness site. The aim is to demonstrate the installation and recovery over a wide spectrum of tidal flow and wave heights since the deployment method uses Subhub’s unique submersible stability characteristics that are less sensitive to extreme conditions.
  • Phase 2b will demonstrate the long term deployment capabilities, operational stability of its gravity based anchoring system and increased performance characteristics of the turbines which have shown insensitivity to cross flows in tank testing at Flowave. An O&M strategy will be developed for its customers assessing fatigue loads, marine growth and corrosion factors.
  • Phase 3 will be used to assess the environmental impacts of a longer term deployment and demonstrate the ability of the Subhub to be quickly and easily decommissioned from the site.

Once this testing is complete it is intended to offer the Subhub for sale and re-use it at another site. All going well Subhub will be further developed utilising a test berth at EMEC with a larger capcity machine rated at 1.2MW. QED Naval is in early stage discussions with several collaborative partners who would like to be involved in this larger scale development due to be deployed in 2018.

Hive of activity by Cimpina team at the aft end of the Subhub.
Project management team discussing the completion of the Subhub, pictured at the front end of Subhub.
Subhub side shell and aft leg of the tripod configuration of Subhub to maintain stability on an uneven seabed.

 

Cimpina Awarded Subhub Build Contract

Cimpina based in Northern Ireland in Belfast Docks have been awarded the build contract for the Subhub. They were among 6 different fabricators contending for the business.

Work commenced in November and the outer shell was taking shape before Christmas. Completion is expected in the first quarter of next year.

Keel Laying Team with Toasts of Scapa (Orkney Whiskey) and Champagne.
Keel laying ceremony with representatives from Cimpina * QED Naval toasting the commencement of build using of Scapa Whiskey (Orkney water of life).

The Community Subhub with a capacity of 200kW using Schottel tidal turbines will be launched and transported up to EMEC where long term testing will be conducted, as part of the FORESEA project, to demonstrate the Subhub’s capabilities with installation and retrieval. The performance of the Subhub and turbines will be monitored. Long term operations and maintenance strategy will be developed to validate the OPEX cost model and hence the LCOE for a Subhub related project.

External shell and bulkheads taking shape.
External shell and bulkheads taking shape.
Outer shell supported by the upstands.
Outer shell supported by the upstands.

 

Subhub Project Awarded FORESEA Funding to Test at EMEC

QED Naval are excited to announce that they have been awarded funding for the open sea testing at the EMEC tidal test sites. This provides access to both the scale tidal test site along with the grid connected Falls of Warness site.

QED Naval have engaged in pre-commercial discussions for a contract at EMEC to carry marine operations at their test site that aims to validate claims of the Subhub tidal platform. These include:

  • Reduction in the cost of deployment of tidal turbines using a single marine operation to install the turbines ready for operation on the seabed within a broad range and tidal states and wave conditions.
  • Enhanced power output and site capacity factors.
  • Retrieval of the system for maintenance in a single marine  operation using a low cost multicat vessel over a broad range of conditions.
EMEC Falls of Warness tidal test stie.
EMEC Falls of Warness tidal test stie.

Significant site feasibility work has already been carried out by QED Naval as part of the FORESEA application which will ultimately see them connect tidal turbines to the grid for verification of the enhanced performance characteristics provided by the Subhub foundation solution.

GIS mapping tool containing all the flow data, berth positions and bathymetry of the Falls of Warness tidal test site.

GIS mapping tool containing all the flow data, berth positions and bathymetry of the Falls of Warness tidal test site.

Modularised Subhub Makes For Easier Launch & Marine Ops

The latest community scale version of the Subhub has now been frozen ready for build. Manufacturing outputs have been completed for the new modularised version of the Subhub. This allows the bare hull to be fabricated on the quayside and lifted into the water by a smaller, more available and lower cost crane.

After launch the newly designed modular solid ballast blocks can be easily lifted slotted into the bottom of the hull to provide the impressive stability characteristics of the Subhub during transit and installation.

Solid ballast modules allows smaller more available, lower cost cranes to be used for launch of the Subhub.
Solid ballast modules allows smaller more available, lower cost cranes to be used for launch of the Subhub.

The pressure cabinets to support the 3 x Tocardo T1 turbines have also been modularised to allow them to be slotted into the top of the hull once the main hull has been launched. This allows the cabinets to be quickly connected up to the generators whilst afloat. Access panels allow simple maintenance operations to be completed at sea.

Pressure Cabinets
Pressure cabinets slot into the main hull of the Subhub making integration and connection to the generators easy.

 

Subhub Completes High Flow Installation Trials

Successful Installation & Retrieval Trials in Real Tidal Conditions

Subhub TUC Tocardo Dummy Turbines
Subhub in transit condition whilst moored up in real tidal conditions after a passing squall brought waves up the channel. The white blade profiles simulate the rotors of the turbines during installation/retrieval.

Recent testing of the Subhub operations model in high tidal flow conditions proved its ballast system capabilities and installation and retrieval methodology with great success. QED Naval were able to install the model on the seabed safely and in a controlled manner within minutes. The model was then secured on the seabed overnight before being recovered to the surface gracefully within an equally short time period and control.

 

Despite onerous wind, wave and current conditions experienced during testing, the Subhub coped admirably during the installation and retrieval trials.  Scaling these extreme conditions to the prototype size, based on a 4.0m diameter turbine, would be equivalent to over 2m/s or 4 knots with a significant wave heights over 1.0m

 

Frontal profiles of turbine blades were added to the cross beam to simulate three turbines being installed on the Subhub; the blades acting against the current presented no issues.

Offler Marine Supports Subhub Installation

Offler Marine

QED Naval have teamed up with Offler Marine Services Group (OMSG) to provide offshore expertise with the selection of installation and recovery methods, to help de-risk and reduce cost exposure of the Subhub project and its payload of tidal turbines.

QED Naval received a real boost to their plans to reduce the costs of deployment of the commercial scale (multi MW devices) from OMSG. They received a report this week from OSMG produced by the team who have significant experience within the tidal, wave and offshore wind power industry. Steve Offler lent his weight and credibility behind the Subhub project when it was recognised that the feasibility to install Subhub in 30-60 minute time scalesandat a fraction of the typical installation costs currently influencing the industry were achievable.

Recommendations from OMSG’s report are currently being implemented into the prototype structuredesign, based on a 4.0m diameter tidal turbine, tofurther fine tune the offshoreinstallation and recoveryprocess.

Jeremy Smith, Managing Director of QED Naval said, “This is a really exciting development for QED Subhub since the basis of our design is to remove the need for complex, large and hi tech installation vessels with equally high day rates and availability issues. This report along with what we have learned from our ballasting trials at Forth Estuary Engineering are the positive indicators that significant reductions in the costs of deployment of commercial scale devices are not too far away. We are steadily moving towards offering our customers and their investors a generic deployment solution no matter what the location, environment or turbine used“.

Steve Offler, MD at OMSG said “Marine Installation costs and risks are high, QED have identified this and sought to engage installation design expertise early to ensure costs and risks are mitigated, this is an extremely important part of the development process and one that will add significant value to Subhubs future success

Client list of Offler Marine.

Client list of Offler Marine.

Subhub Testing Commences

Subhub Operations model being launched for the shakedown tests.
Subhub Operations model being launched for the shakedown tests.

QED Naval launched the Subhub Operational model last week at Forth Estuary Engineering’s (FEE) dock in Leith. The last few weeks has been a hive of activity finalising the setup of the ballast systems, instrumentation, and the dock access and testing arrangements.

FEE have provided outstanding support during the preparation and will to be on hand through the testing phase. The Subhub will now be put through its passes to test the stability during installation, ballast system control and installation/retrieval methods.

The Director of QED Naval was on site to witness the launch and initial testing and has stated, “A lot of  hard work has gone into getting the Subhub project to this point which is a credit to the team and supporting companies. The Operations model represents a big step forward for the Subhub project de-risking the ballast system and installation/retrieval methods which is a key selling point used to reduce the cost of deployment and overall the cost of energy”.

Subhub Operations model fully instrumented with pressure and tank level gauges and air ballast system.
Subhub Operations model fully instrumented with pressure and tank level gauges with air ballast system.

 

Subhub Ops Model Weighs In

The Subhub Operations Model continues it fit-out and setup for the testing at Forth Estuaries Engineering’s (FEE’s) dock in Leith. An essential part of that was the “weigh-in” to check against our design calculations to ensure she is correctly ballasted for her initial trials.

The operations model is based on a 1.0m tidal turbine rotor diameter. It is designed to accommodate 3 of the heaviest tidal turbines on the market. The Operations Model has been built to the same mass proportions of the prototype so its motions will be accurately modeled.

The “Operations Model” is the 3rd in a series of models with very specific objectives. It has been developed to test the ballasting system and conduct installation/retrieval trials.

Subhub operations model combined with X-Beam being weighed and checked against design weight.
Subhub operations model combined with X-Beam being weighed and checked against design weight.

ANSYS Boosts Productivity on Subhub Project

QED Naval selected ANSYS Spaceclaim as their advanced CAD design tool after a review of other products on the market. Spaceclaim is a direct modeler which means any line, curve surface or solid element of the CAD geometry can be modified and updated in an instant using simple tools.

Spaceclaim integrates seamlessly with the rest of the ANSYS suite through Workbench into Fluent and Mechanical. It can import geometry from the majority of CAD  formats. It is particularly good at fixing errors in geometry really quickly and intuitively by using the main pull tools. This is particularly useful for CFD fluid modelling and FEA structural analysis.

Spaceclaim provides a significant increase in performance in producing manufacturing outputs drawings which has allowed us to transfer our design to our suppliers and subcontractors quickly and easily.

Baseline Subhub model within Spaceclaim.
Baseline Subhub model within Spaceclaim.